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Nondiagonal Seed Universes and a Network of
Double Gravitational Soliton Universes
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By using the double Ehlers transformations and y transformations, new non-
diagonal seed solutions are obtained. From these seed solutions we obtain a
network of double gravitational soliton solutions. The double gravitational
inverse scattering method is used to give some concrete examples of new
solutions.

1. INTRODUCTION AND PREPARATION

In gravitational theory, the inverse scattering method found by
Belinsky and Zakharov (BZ) (1978, 1979) has been developed into the
double inverse scattering method by Zhong (1988a, b) and the latter can
be connected with the double Ernst equation (Zhong, 1985; Ernst, 1968).
By using the double inverse scattering method, we can easily give gravita-
tional soliton solutions. However, in the process of using the inverse
scattering method it is difficult to choose the seed solutions, especially the
nondiagonal seed solutions. So far, there have been much fewer solutions
of the double BZ equation used as the seed solutions. Gao and Zhong
(1992) have discussed how to seek nondiagonal seed solutions. We have
found some double Backlund transformations by which we can obtain a set
of seed solutions. Furthermore, we can obtain a network of double soliton
solutions.

First we introduce some necessary symbols and terms; let J denote the
double imaginary unit, ie, J=i (i’= —1)or J=¢ (¢’=1,¢# +1). Leta
be a real number set, a= {ay, ay,...,a,}, and X | |a,| is a covergent
series; then

oo}
aN="Y a,J* (1.1)
n=0
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is called a double real number and corresponds to a dual real number pair
(aC’ aH))

ac=a(J=i)=) (—1)a,
e (1.2)
ap=a(J=¢)= ) a,
n=0
If a(J) and b(J) are both double real numbers, then
zZ(Jy=a(J)+J-b(J) (1.3)

is a double complex number. The double exponential function e’ is defined
by

e’ = C(JO) + JS(JO) (1.4)
where
S(J0)= 3 -——0—— Jo)?
( )_n§0(2n+1)!( )
- (1.5)
C(Jo)= P W (JO)y*"

where 0 is a real number; when J =i, S(J)=sin and C(J)=cos; when j=¢,
S(J)=sh and C(J)=ch. The commutation operator o is defined as

o I J, i=e, £=i (1.6)
The line element of an axisymmetric vacuum field (ASVF) can be
taken as

ds? = f~'[e*(dp? + d2*) + p* dp*] + f(dt + © dp)? (1.7)

where f, w, and t are real functions of p and z only, and 7 is determined
by f and . Considering the double complex Ernst equation
Re £(J)-V*&(J)=V&(T) V&) (1.8)

where F(J) and Q(J) are double real functions of p and Z, if £(J) is a
solution, then we obtain a pair of gravitational dual solutions,
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P e
where the NK transformations are defined by
T: F(J)—TLFJ)]=pF '(J)
Vi QU) - Vi[QU) ] =w (1.10)
- j pF=(N[6,9(J) -dp— 8,Q(J) - dz]

Let M(J) be a 2x 2 double matrix
=555y a0 r ) (1D

Then equation (1.8) is changed into

0,[p0,M(J)- M~ (J)]1+0.[p0, M(J)- M~ '(J)]=0

det M(J)= —J%  MT(J)=M(J) (1.12)

where 7 denotes the transposition. From the solution M(J) of equation
(1.12) we can obtain the solution of equation (1.8),

SNy =1/IM(N) ] +J - [M(N)] 12/ [M(I) ] (1.13)

We consider the following double Lax pair:

2 UL+ ()
(a +p + A a>d/°( )= i+ A2 VolJ)
(az— 2 )wo( W0,y (s
P>+ A
Yo(A=0;J)=My(J) (1.15)

where
Ug(J) = pd,My(J) - My '(J), Wo(J)=pd. Mo(J)-M~'(J) (1.16)

and Yo(J)=1o(4, p, z;J) is a double ordinary complex matrix, A is a
double ordinary complex parameter, and the n-soliton solutions are
obtained as
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M, (J)= |det M(J)| =" M (J)

[M}() ] = [Mo(I) s — Z NEDIT D) 1 NG () il T

k l=1

[T =mPNIM(N) ] mPD Ll ) (1) + 9]
Nfzk)(*]) = mgk)(J)[Mo(J)]ab
mP) =m@ 5 (A=) T

(1.17)

det M (J)= — JX( =1y p* [ 7))
k=1

where m{¥)(J) are double constants (a, b=1, 2) and

0, Un(J) =2pp,(J)/[p* + p3(J)]
0.1l T) = — 203/ [p* + 13(J)] (1.18)
wil )= plp, z; ) =0, (J) —z & {[“k(-,) _‘2]2 + p2}1/2

where o,(J) are constants. Let

7~ {Mn({) when n i‘s even (1.19)
M (J]) when 7 is odd
Then we obtain
E(N) = YIM ()] + 7 - [M(N)]12/[M,(I) ] (1.20)

In the system (1.17), ¥o(J) only enters along the pole’s trajectories
Uie(J) (Letelier, 1985). In order to construct the soliton solutions we only
need Yo (J)=voA=pJ), p,z;J), (k=1,2,...); the condition (1.15)
reads

'/’Ok(J)Iuk(J)-,():MO(J) (1-21)

Notice that (Letelier, 1985; Gao and Zhong, 1992)

1
(0/2, +; d,+ af) In u,(J)=0
(1.22)
ap.uk(‘])
2u,(J)

1 0, mdJ)

uk(.l)—>0—p’ 2u(J)

wiJ) =0
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Considering the function ¢(p, z) which satisfies V?¢(p, z)=0, and the
operator V> =92+ (1/p)d, + 07, we have

Yo) = [ $Lp/ul D8, 1) 8,0 — 8. p(S) - 8.0] dp
+ [0.1J) 0,0 — 0, 1(J) 0. 0] dz} (1.23)

When w, -0, Y[, ()] = o.
According to Gao and Zhong (1992), if the solution My(J) of (1.12)
satisfies (i)

MO(J):MO(q)la (r’)Za'-"(pN;']) (1.243)
and (ii)

0 0
_{—MO[¢13 Prsers On; I ] 'Mo)l[q)l, Pas--0s (/’N;J]}=O (1.24b)
00, aq)j

then we can obtain directly a wave function o (J)
YoelJ) = Mo{(Pl = Yl w1 - -on—= Yoy, ()]s J} (1.25)

where the arrow denotes that ¢, is replaced by Y,(J). In particular,
when the seed solution My(J)= M,(¢;J), the condition (ii) is satisfied
automatically.

2. GENERATING OF NONDIAGONAL SEED SOLUTION AND
THE NETWORK OF DOUBLE SOLITON SOLUTIONS

In Section 1 we introduced the two conditions for the seed solutions.
It is still difficult to find more new seed solutions. In order to solve this
problem we introduce some nonlinear transformations, by use of which we
can obtain new seed solutions. We have found that two transformations
satisfy the requirement, the double Ehlers transformation and the double y
transformation (Zhong, 1988a, b).

Let &£(J)=Fy(J)+ J-Q4(J) be a double solution of equation (1.8); by
the double y transformation

Ty: &) > &' (J)=Fy(J) +J-QuJ)
Fo(J)= =% 2Fo(D)/[Q3()) — J*Fo(J)] (2.1)
Qo(J) =%y 72Q(1)/[Q5 — TP F(J)]
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For equation (1.12) we have

Ty: Mo(J) = Mo(J)

Sl e |
M) =55 (Qou) Qé(f)~J2F0<J>> 22)

1 <v2[93(f)—12F3(1)] —JZQo(J)>
Fo(J) —ngo(J) VZ

My(J)=

Clearly the solution My(J) of equation (1.12) satisfies equations (1.24a)
and (1.24b) if My(J) satisfies them; ie., if My(J) is a seed solution, then -
Mg(J) is also a seed solution. The Ehlers transformation acting on the
original seed solution M(J) yields a different situation, and we will discuss
this in the following.

Let &(J)=Fy(J)+JQ(J) be an original seed solution, and let the
Ehlers transformation act on it,

Tp: &)= &o(J)=Fo(J)+JQ0(J)
&(J)= LalJ) &(J) + Jb(N) )/ [Je(J) 6x(J) + d(J) ]
a(J)d(J)—J*b(J) c(J) =1
Tg: Mo(J)—> My(J)

Ao()/A(T) A(N)/A(T) >
A(N/A(T) AN = TPANN I/A0Y) Ay(N)]

(2.3)

My() = (

where

Fo(J)=A(J)/A(])

Qo(J) = Ay(J)/Ag(J)

Ao(J) = [d*(J) + J?c(J) Qo(J)]— T 2e(J) Fo(J) (24)

A, (J)=Fy(J)

A(J)=J%a(J) e(J) Q) + La(Jy d(J) + J>b(JT) ¢(J)] Qo(J)

—a(J) e(J) Fo(J) + b(J) d(J)

From (2.3) and (2.4) we know that if M,(J) satisfies the condition (1.24a),
then M (J) satisfies it. In the case of My(J)= My(p; J), M(J)=My(p;J)
satisfies automatically (1.24b), ie., if My(¢;J) is a seed solution, then

My(e; J) is also a seed solution.
Since the result of using successively the Ehlers transformation is still
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an Ehlers transformation, and the result of .using successively a y transfor-
mation two times is equal to the identical transformation, we should use
alternately the Ehlers transformation and.the y transformation. The set of

seed solutions and the network of new soliton solutions are obtained as
follows:

Te Mo Ty El; Te Ty Te

Bz BZ BZ B2
I | \' I‘ :

Fig. 1.

Notice that the y transformation and the BZ transformation are commutive

{Zhong, 1990), but the Ehlers transformation and the BZ transformation
are not.

3. NEW DOUBLE GRAVITATIONAL SOLITON SOLUTIONS
FOR THE ASVF CASE

For the sake of convenience, we write the seed solution as

M(J)= (AO(J YA Ay (YA >
’ A(IYANT)  [AY) = TPAXN VBN A (34

det Mo(J)= —J?, MJ(J)=MJ)
The corresponding double scattering wave function is
Vou=Mo{o,— Yilo;J1- - -0y — Yiloy; J1: 7} (32)
The one-soliton solutions M,(J) associated with seed solutions are

_ 1 (M1 [MI1]12> 33
M= [M&Jzz—[M;Ju[M;Jn([M;]n (Mi1) )

902/32/8-10
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[M(N iy = [Mo()]1s — {Lui) + p*1/BY({ki [Mo(N)]1s
+ ko[ Mo(N) 1123 TMo(J) 114
+ {ka LMo (D) 111 + ks [Mo(1) 121} [Mo(J)]12)
(M) 2= [Mo(N2— { L)+ p*V/BI({k [Mo(J) 11y
+ ko[ My(I)Jo1 } [Mo(J) 112
+ {k[LMo(N) 112 + ks [Mo(J) 101 } [Mo()]22)
[M()) 0o = [Mo(N)]0o — { i) + p*1/BY({ k1 [Mo(]) 12
+ ko [Mo(I) 122} [Mo(1)] 12
+ (ko[ Mo(J) 11z + ks [Mo(0) 122} LM o(T) 122)

[(M(J) ]y =[M())]12 (34)
ky=[mP(N1%  ky=[mPN)IMPOD], ky=[mPU)]?
B={k,[Mo(J)]11 + 2k, [ Mo())] 12 + ks [Mo(N) 102} 1i(J)  (3.5)

A (Y )= TPANY s D) o Az(Yk;J):I

mV(J)= —J*? [m?m(J)

AT AL N AY]
Az e d o1 o 5
m(0) = =77 =m0 EED o) D] g

3.1. We take the double Weyl-type solution as the original seed
solution. After taking the double Ehlers transformation, we obtain the new
double seed solution

My(J)= (Ao(w)/Al(co) Ay(0)/A (@) )

A@)/A(p) [AN@)—T°AY@)1/A(9) - Ailp)
det Mo(NY=—J?  Vip(p,2z)=0
Ao(@) = d*(J)— T (])e*®

Afp)=e®
Aq(@)=b(J) d(J) — a(J) c(J)e**
a(J) d(J) — J*(J) e(J) = 1 (3.7)
Vo)) = (Ao( Y )/A(Y,) AY ) A(Y,) >
A(Y)/A(Y) [ANY ) —TPANY) VALY, A(Y)

(3.8)
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From (3.3)-(3.5) we know that if we compute m{"(J) and m{’(J) we
obtain the one-soliton solution

mgl)(-]) = —JXL e+ L,e*" + Ly)/(B e’ + Bre™) (3.9)
m{(J)= —J% (S, + 8,) '

where
Li=pai—quoaa,, Ly=p Qaa,—J>)—q,(a,f>+a,8,)
Ly=p,5—q,a:f,, Sy=—pay+4,84, Sy=-—piar+4q,5;
ay=—a(l)e(J), oa,=bJ)dJ), Bi=—T**])
Ba=d?(J), pr=m@(J), q,=m(J)

I

3.2. Considering the double Weyl-type solution as the original seed
solution, and by taking the double Ehlers transformation and the double
y transformation in turn, we obtain the new double seed solution

M(J) = (Ao(¢)/A1(<0) Ax(o)/A(9) )

Ay(@)/A(9) [A@)—T?Ai(@)1/Ao(@) Ai(@)
det Mo(J)= —J%  Vp(p,z)=0

A =0, 40,2 +v
o(®) 1 2 3 (3.10)
A(@)=u,e*® +u,e®

Ay@)=w,e* +w,e +w,
vy=0f,  Uvy=2u0,~J%  vy=03
’41:_]23)‘2/31, uzz_-ﬂ?ﬁzﬁz
W1=J2V2‘x1.31: W2=J2772(“1ﬁ2+a2ﬁ1)’ W3=szxzﬂz

In this case, m{*(J) and m{"(J) are given by

1) 8Y (1),6Y (1),4Y (1),2Y (1)
LDt 4 LS 4 LYt 4 LM 4 L

(1) — 2
) L™ [P 4 L P3N 4 LB M

Sie*+ 8, + S,

1) —_
e N L (3.11)
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L =piwi—q,0,w,

L =p,2wywy, —ui) — g, (v, wy + 0,wy)

LY =p (2w ws + w3 —2uyu5) — g1 (0,3 + 0,w5 + 03W))

LY =p,(2wswy —u3) — q,(v2 w3 + v3w5)

LY =p w3 —q,v3w,

LP=vu, LP=vu,+v,uy, LP=vu;,, LP=vsu,
Sy=—pwy, Sy= —piwy+q,0,, S;=—=piw3+¢,0;
pi=miJ), g, =m3(J)

This is the explicit expression for the one-soliton solution associated with
the seed solution M (J).

3.3. Similarly, considering the solution of the hyperbolic complex
Ernst equation as the original seed solution,

1
Moy = (qf 0>

det My, = —1, V3p(p,z)=0

and taking the Ehlers transformation on the hyperbolic complex seed
solution M, we obtain the new seed solution

(3.12)

7 =<Ao((p)/A1<<p) Ay @)/A (o) >
TN AN )AL (9) [AX @) —T*AY(@)1/Aol@) Ay(e)
det Rop=—1, V2p(p,z)=0 (3.13)

Ao(‘P)=ﬂ1(P2+Bz(P, A(p)=0, A2(¢)=91(P2+92(P
Bi=d? B, =2dc, 0, =bd, 8,=ad+ be, ad—bc=1

where a, b, ¢, and d are real constants.
In this case, we have m!" and m{" as

mP=—[L Y, + LY 1u+ Ly Y15 /B Y i+ B2 Y 1]

mP=8,+8,Yy
Ly=pia(05—1)—q,40,0,, Ly=2pu0,0,—q14(B,0,+B,6,) (3.14)
Ly=pn01—q.1ub10,
Si= =Pt + 49141, So=—piut+qub>

where p,; and ¢, are constants.
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4. DISCUSSION FOR THE CASE OF CSVF

For the case of a cylindrically symmetric vacuum field (CSVF), the
line element can be written as

ds® =g~ '[e®(dp?® — dt*) + p* d¢*] + g(dz + o dp)?

(4.1)
where g, d, and ¢ are functions of p and ¢ only, and ¢ is determined by g
and §; we obtain the double Ernst equation

Re(%) V¢ =V% -V

4.2)
with the operators V2= 8% + (1/p)d,— 2,V =(é,,id,), and € =4(p, 1) =
G(p, 1) +iZ(p, t) is an ordinary complex Ernst potential. A pair of dual
CSVF solutions are

o3 4.3)
The NK transformation is defined as

T G- T(G)=p/G

V. ToV(E)=0 (4.4)

o =j (p/G*)(,% -dp +3,% -dt)
Let

W= 171 z
G\ z*4@?
We obtain the BZ equation for the case of CSVF (Zhong, 1990)

0,(0,M - M~1)~d,pd,M-M")=0
det M =1, MT=M

(4.5)
From the solution of equation (4.5), we can obtain the solution of equation
(4.2),

(6=1/[1\~1]11+i[ﬂ]12/[ﬂ]“ (4-6)
Similar to the case of ASVF, we can easily write out the set of the new seed

solutions of equation (4.5) and the network of the corresponding soliton
solutions.
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